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anti-atherosclerosis, anti-inflammation, hypoglycemic, 
and liver protection activities [4–6]. The therapeutic 
effects are primarily attributed to active substances such 
as flavonoids, alkaloids, sesquiterpenes, and especially 
polysaccharides, which serve as the quality evaluation 
index for D. huoshanense [7, 8].

The advancement of high-throughput sequencing 
technology has significantly expanded research meth-
ods in the field of life sciences. This technology not only 
enhances the efficiency of scientific research but also 
drives the progress of basic research. Whole genome 
sequencing has been successfully accomplished in model 
plants and crops, with many species now possessing gene 
function analysis platforms that integrate multiple omics 
data. For instance, Tian et al. developed the MCENet 
platform [9], which included extensive Zea mays gene 
co-expression networks constructed from transcriptomic 

Background
Dendrobium huoshanense, a traditional medicinal and 
food homologous plant, is a member of the Orchida-
ceae family and has a rich history of medicinal use [1]. 
It is commonly employed for its beneficial effects on the 
stomach, fluid production, heat clearance, and yin nour-
ishment [2, 3]. Previous studies have demonstrated the 
diverse activities of D. huoshanense, including immu-
noregulation, anti-oxidation, anti-cataract, anti-glyca-
tion, anti-aging, anti-tumor, anti-rheumatoid arthritis, 
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Abstract
Background  Dendrobium huoshanense, a traditional medicinal and food plant, has a rich history of use. Recently, 
its genome was decoded, offering valuable insights into gene function. However, there is no comprehensive gene 
functional analysis platform for D. huoshanense.

Result  To address this, we created a platform for gene function analysis and comparison in D. huoshanense (DhuFAP). 
Using 69 RNA-seq samples, we constructed a gene co-expression network and annotated D. huoshanense genes 
by aligning sequences with public protein databases. Our platform contained tools like Blast, gene set enrichment 
analysis, heatmap analysis, sequence extraction, and JBrowse. Analysis revealed co-expression of transcription factors 
(C2H2, GRAS, NAC) with genes encoding key enzymes in alkaloid biosynthesis. We also showcased the reliability and 
applicability of our platform using Chalcone synthases (CHS).

Conclusion  DhuFAP (www.gzybioinformatics.cn/DhuFAP) and its suite of tools represent an accessible and 
invaluable resource for researchers, enabling the exploration of functional information pertaining to D. huoshanense 
genes. This platform stands poised to facilitate significant biological discoveries in this domain.
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data, as well as gene function analysis tools, facilitating 
the study of gene function and interactions between dif-
ferent genes. More recently, Wang et al. analyzed genom-
ics data from 13 species in 9 genera of the Malvaceae 
family and established a functional genomic hub for 
Malvaceae plant [10], including genome-wide associa-
tion analysis (GWAS) and single nucleotide mutation site 
(SNP) information, along with 374 sets of transcriptomic 
and proteomic data.

Currently, there are few analysis platforms that include 
the genetic information and functionality of D. huosha-
nense. The IMP provides genome information for D. 
huoshanense [11]. However, it lacks information such as 
expression data, co-expression networks, and other tran-
scriptome-related details. Many databases are not suit-
able for gene functional analysis of D. huoshanense. For 
instance, essential plant databases like Phytozome [12] 
do not include the genome and transcriptome data for D. 
huoshanense. As D. huoshanense possesses active ingre-
dients with significant pharmacological effects, exploring 
the genes regulating these active components is crucial 
for researchers to obtain detailed gene information using 
existing platforms. Therefore, it is essential to develop a 
gene function analysis platform for D. huoshanense by 
integrating various annotations. Such a platform will 
contribute to deeper gene function analysis and explora-
tion in this species.

In 2020, the whole genome sequencing of D. huosha-
nense was successfully completed [13]. This achievement 
has led to the accumulation of valuable transcriptome 
data for D. huoshanense. To fully utilize and leverage 
this data, we curated transcriptome data obtained from 
the Sequence Read Archive (SRA) at the National Center 
for Biotechnology Information (NCBI) and the Genome 
Sequence Archive (GSA) at the National Genomics Data 
Center (NGDC) [14]. We constructed a comprehensive 
co-expression network of D. huoshanense. Additionally, 
we have developed a gene function analysis platform for 
D. huoshanense, named DhuFAP. This platform incorpo-
rates various analysis tools, including BLAST, GSEA, and 
JBrowse, and so on. These tools are designed to facilitate 
the exploration of novel gene functions in D. huoshanense 
and enable researchers to delve deeper into the molecular 
mechanisms underlying its unique characteristics.

Materials and methods
Data resource
The genomic data were sourced from the CNSA data-
base’s FTP public service, which included genome 
sequences, gene structure annotation files, protein 
sequences, and transcript sequences. Transcriptomic 
data were obtained from SRA and NGDC. Protein 
sequences from public platforms were downloaded from 
NCBI, Uniprot, and TAIR databases. KEGG and GO 

annotation information was sourced from the KEGG 
database and agriGO v2. The EAR protein sequences, 
CAZy protein sequences, and transporter protein 
sequences in gene families were obtained from the Plant-
EAR, CAZy database, and TransportDB, respectively.

Function annotation
By utilizing the Diamond Blastp algorithm (v2.0.14.152) 
with the parameters “--evalue 1E-3” and “--top 1” [15], 
the protein sequences of D. huoshanense were aligned to 
those present in public databases, including NR, Uniprot, 
SwissProt, and TAIR. The resulting annotation informa-
tion was obtained from the best match identified in these 
databases. KEGG annotation was performed using the 
GhostKOALA website [16], and the predicted KEGG 
numbers were employed to retrieve annotation informa-
tion from the KEGG database [17]. GO annotation and 
pfam domain information was accomplished through the 
InterProScan software [18], enabling the acquisition of 
GO numbers. Subsequently, the corresponding annota-
tion information was downloaded from agriGO v2.0 [19] 
based on the obtained GO numbers.

Co-expression network construction
Downloaded transcriptome samples were mapped to the 
reference genome of D. huoshanense using the Hisat2 
software [20], resulting in alignment SAM files. Sub-
sequently, SAM files were converted to BAM file and 
sorted using sam tools [21]. The stringtie software [22] 
was then employed to obtain the expression values for 
each transcriptome sample, enabling the construction 
of an expression matrix. Using the PCC algorithm, we 
calculated the correlation between gene expressions for 
every pair of genes. The gene correlations were subse-
quently ranked using the MR algorithm. The formula is 
as follows:
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In the given formulas, ‘n’ represents the total number of 
samples in the RNA-seq data, while ‘x’ and ‘y’ represent 
the TPM values. The term ‘Rank’ refers to the order of 
PCC values, where ‘AB’ signifies the ranking of gene 
A among all genes with gene B, and ‘BA’ indicates the 
reverse ranking.

Gene pairs in co-expression networks have similar 
expression patterns and may therefore have similar func-
tions. Similar functionality can be evaluated by GO. The 
more similar the GO between co-expressed gene pairs, 
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the more reliable the co-expression network will be. We 
used co-expressed genes to assess whether the GO can be 
accurately predicted. If an accurate prediction is true, it 
cannot be accurately predicted to be false. We took these 
predictions as input to a binary classifier and calculated 
the true positive rate (TPR) and false positive rate (FPR), 
and then ploted the ROC curve. The greater the area 
under the curve (AUC) values, the better the prediction 
effect and the more robust the co-expression network. 
We identified Gene Ontology (GO) terms associated with 
biological processes, with a particular focus on those 
exhibiting gene counts ranging from 4 to 20. We evalu-
ated the areas under the ROC curve (AUC) at different 
thresholds. By comparing the AUC values, we deter-
mined the property PCC and MR thresholds.

Protein-protein interaction (PPI) network
The construction of the PPI network for D. huoshanense 
involved the use of the OrthoFinder softwareb [23] to 
predict orthologous relationships between Arabidopsis 
and D. huoshanense. Subsequently, the PPI network was 
mapped from Arabidopsis to D. huoshanense, establish-
ing the PPI network in D. huoshanense.

Gene family identification
Initially, a hidden Markov model obtained from iUUCD 
2.0 [24] successfully identified ubiquitin families in D. 
huoshanense. The log-odds likelihood scores parameter 
was from the threshold recommended by the iUUCD 2.0 
[24]. OrthoFinder [23] was employed for the prediction 
of orthologous relationships between Arabidopsis and D. 
huoshanense with the default parameter. Following this, 
identification of proteins with TP, CAZy and proteins 
with EAR motifs were carried out utilizing the estab-
lished orthologous relationship. The iTAK software [25] 
was utilized to identify transcription factors and protein 
kinases in D. huoshanense and the command was “iTAK.
pl + protein_sequence”. The complete genome underwent 
KEGG pathway annotation through the utilization of 
GhostKOALA [16]. Moreover, an analysis of the func-
tional annotations for CYP450 genes was carried out, 
utilizing the information provided by KEGG annotations.

Construction of DhuFAP
The platform was built using the LAMP (Linux, Apache, 
MySQL, PHP) technical stack as its foundation. A 
MySQL database was created by importing various 
results and data analyses, such as gene structure annota-
tion, co-expression network, gene functional annotation, 
PPI network, and gene family information. To enhance 
data visualization, responsive websites were created by 
employing a combination of HTML, PHP, JavaScript, and 
CSS programming languages.

Toolkit for gene function analysis
We integrated Gene Set Enrichment Analysis (GSEA) 
[26], building upon previous descriptions [27–29]. We 
also incorporated JBrowse software [30], a tool devel-
oped by Buels et al., to display transcriptome data and 
blast tools [31] to find similar sequences. Furthermore, 
we introduced a sequence extraction tool using a Perl 
script and implemented a Heatmap analysis tool based 
on Highchart Javascript. These additions expanded the 
capabilities of the platform and improved the visualiza-
tion and analysis of data.

Result
Gene functional annotation
We obtained the genome data of D. huoshanense from 
NGDC, which included a comprehensive dataset of 
21,070 transcripts and 21,070 proteins. To ensure accu-
rate annotation, we subjected these resources to align-
ment with the protein sequences against well-known 
databases such as NR, Uniprot, TAIR, trEMBL, and 
Swissprot. Consequently, we annotated a total of 20,675, 
20,648, 15204, 20,727, and 13,021 genes, respectively. 
Furthermore, we utilized InterProScan software to con-
duct Gene Ontology (GO) annotations on a total of 
8,037 genes [18]. For a comprehensive understanding of 
functional pathways, we utilized the GhostKOLAL [16] 
online tools to map KEGG annotation onto a set of 3,309 
genes. Lastly, we conducted functional characterization 
of protein domains using the PfamScan software [32] 
to provide a comprehensive understanding of proteins 
(Fig. 1A).

Gene family classification
Initially, using iTAK software, we identified 1,111 tran-
scription factors (TFs), 291 transcription regulators 
(TRs), and 678 protein kinases (PKs) in D. huoshanense 
respectively. Subsequently, utilizing the HMM profile 
derived from the ubiquitin-proteasome dataset within 
the iUUCD v2.0 database, we predicted 707 genes 
accountable for encoding components within the ubiq-
uitin-proteasome system. Additionally, through gene 
alignment with databases like PlantEAR, TransprotDB, 
and CAZy, we effectively pinpointed 366 EAR genes, 508 
genes to the Transprot family, and 528 genes categorized 
under the CAZy family. In addition, KEGG annotation 
allowed us to anticipate the existence of 52 Cytochrome 
P450 genes (Fig.  1B). These analyses provided valu-
able insights into the transcriptional regulation, protein 
kinase activity, ubiquitin-proteasome system, and gene 
families present in D. huoshanense.

Construction of co-expression network
We collected 69 transcriptome samples from SRA and 
NGDC, encompassing data from diverse tissues (roots, 
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stems, leaves) under normal growth conditions and vari-
ous treatments (drought, low temperature, MeJA) under 
environment stress. Then we constructed a co-expression 
network by utilizing these transcriptome data, which 
were subsequently mapped to the reference genome with 
a mapping ratio exceeding 60% (Table S1). We analyzed 
the Pearson correlation coefficient (PCC) values obtained 
from expression profiles to identify co-expressed gene 
pairs. Many gene pairs showed no or weak correlation 

in their expression patterns (Fig.  1C). To pinpoint gene 
pairs closely linked within each other’s network, we used 
the MR (Matural Rank) method based on their PCC 
ranking values.

To ensure the reliability of our constructed network, 
we selected GO terms associated with similar biological 
activities, resulting in 120 terms with varying gene counts 
ranging from 4 to 20. We compared the area under the 
curve (AUC) values for different PCC (0.6, 0.7, 0.8, 0.9), 

Fig. 1  Related statistical information of DhuFAP. (A) Gene function annotation information provided by DhuFAP. (B) Gene family classification informa-
tion available. (C) The relationship between Pearson correlation coefficient (PCC) and the number of edges in the co-expression network. (D) Distribution 
of Area Under the Curve (AUC) values at different Matural Rank (MR) thresholds. (E) Statistical analysis of nodes and edges in the positive co-expression 
network, negative co-expression network, and Protein-Protein Interaction (PPI) network
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considering the overlap between positively co-expressed 
genes and the previously selected GO gene sets. We 
observed non-significant differences in AUC values 
among the PCC networks. To encompass a broader set of 
genes, we opted for a PCC threshold of > 0.6 (Figure S1). 
We further examined the area under the curve (AUC) 
values across various MR thresholds with the constraint 
of PCC > 0.6. This analysis led us to establish a network 
threshold of MR < 30 for the positive co-expression net-
work. The thresholds for the negative co-expression 
network were set at PCC<-0.5 and MR < 30 (Fig.  1D). 
The resulting co-expression network for D. huoshanense 
consisted of 313,036 co-expression gene pairs. This con-
tained 214,795 gene pairs in the positive co-expression 
network and 98,241 gene pairs in the negative co-expres-
sion network (Fig. 1E).

Protein–protein interaction network
By predicting the orthologous genes between Arabidop-
sis and D. huoshanense, we mapped the protein-protein 
interaction (PPI) network of Arabidopsis onto D. huosha-
nense. This resulted in the identification of 19,589 pairs 
of PPI relationships, involving a total of 5,029 genes 
(Fig. 1E).

DEGs in different transcriptome
In order to incorporate gene co-expression and protein-
protein interaction (PPI) networks with gene expression 
data, we performed differential expression analysis on 
the transcriptome data (student’s t-test (p < 0.05) and fold 
change [|log2(foldchange)| > 1]), resulting in the identifi-
cation of differentially expressed genes (DEGs) across five 
sets of data. Through this process, we obtained a total of 
35 distinct groups of DEGs (Table S2).

Platform content
To enhance gene functional analysis in D. huoshanense, 
a comprehensive platform called DhuFAP has been 
developed. DhuFAP comprises seven sections—Home, 
Network, Pathway, Tools, Gene Family, Download, and 
Help—aimed at enhancing user-friendliness and deliver-
ing valuable insights to researchers (Fig.  2). Within the 
Network section, users can access both protein-protein 
interaction (PPI) and co-expression networks, offering 
comprehensive insight into the intricate molecular inter-
actions within D. huoshanense. Pathway section con-
sists of gene annotations from the KEGG database. The 
Gene Family section contains diverse protein families 
like CYP450, TF, TR, PK, TP, Ubiquitin, GAZy, and EAR 
motif-containing proteins. The Tools section offers vari-
ous helpful features. The Blast tool screens nucleic acid 
or protein sequences for similarities within our database. 
GSEA enables comprehensive gene set enrichment analy-
sis. The Extract Sequence tool retrieves gene sequences 

using accession numbers and locations. Moreover, the 
Heatmap Analysis tool visually displays gene expres-
sion data. The inclusion of JBrowse provides an intuitive 
visualization of genomic and transcriptomic features. 
Download section provides convenient access to rel-
evant information, ensuring easy retrieval of necessary 
resources. Furthermore, the Help section offers a com-
prehensive user manual, guiding researchers through the 
platform’s functionalities and optimizing their usage of 
DhuFAP.

Function application
Analysis of key enzyme genes in alkaloid biosynthesis 
pathway
The stem contains an alkaloid that is the primary bioac-
tive component in D. huoshanense. According to KEGG 
annotation in DhuFAP, there were 34 genes associated to 
alkaloid biosynthesis pathways were screened (Table S3). 
In order to better understand the relationship between 
key enzyme genes in alkaloid biosynthesis and TFs, co-
expression analysis was conducted to identify the TFs 
which expressions were correlated with the key enzyme 
genes. The result demonstrated that C2H2, GRAS, NAC 
and other TFs were co-expressed with these key enzyme 
genes (Figure S2 and Table S4). Co-expressed genes have 
the same expression pattern, and may be regulated by the 
same upstream transcription factors. To explore tran-
scription factors that may bind to the key enzyme gene 
promoter regions, we analyzed the co-expression rela-
tionships among key enzymes. The result showed that 
there were four pairs of co-expression between the key 
enzymes (Figure S3). We extracted 3000  bp sequences 
from the promoter region of each co-expression module 
to predict transcription factor binding sites. Many tran-
scription factor binding sites were found, including MYB, 
GRAS and C2H2. This suggests that these transcription 
factors may bind to the key enzyme promoter regions. 
Therefore, these transcription factors may play a crucial 
regulatory role in the biosynthesis of alkaloids.

Characteristic and functional analysis of CHS gene
Chalcone synthases (CHS) are key enzyme that cata-
lyzes alkaloid biosynthesis [33]. In our platform, the 
gene Dhu000001149 was identified as a member of chal-
cone synthase family (Fig.  3A), spans from 7,498,800 to 
7,500,079 bp on chromosome 11 (Fig. 3B). Additionally, 
co-expression network connections were also furnished 
(Fig.  3C). It was found that Chalcone and stilbene syn-
thases domain was located at N-terminal and C-terminal 
in the protein sequence (Fig. 3C). KEGG annotation sug-
gested that enzyme (Fig. 3D and E) involved in tropane, 
piperidine and pyridine alkaloid biosynthesis and flavo-
noid biosynthesis. Previous studies have identified CHS 
involved in the potential accumulation of alkaloid in D. 
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huoshanense [34]. Through expression profiling analysis, 
we found that the expression level of this gene was higher 
in stem and leave compared to root (Fig.  3F). The dis-
play of reads mapping using JBrowse also revealed higher 
expression in leaf and stem (Fig.  4A). Furthermore, the 
accumulation of alkaloid significantly higher in stem, 
leaf than root [7]. The expression of this gene showed a 
similar trend to the synthesis and accumulation of active 
compounds. Therefore, the analysis results suggest that 
the gene may be involved in the accumulation of alkaloid.

Furthermore, we conducted a co-expression analysis 
of CHS with its expression profiles. Network analysis 
revealed 15 genes that showed positive co-expression 
with CHS (Fig. 4B, Table S4). Additionally, many genes in 
the co-expression network were significantly upregulated 
in the leaves and stem (Fig.  4C and D). Analysis of co-
expressed genes with CHS through heatmap analysis also 

revealed similar results (Fig. 4E). Therefore, our analysis 
suggests that the CHS gene plays an important role in 
regulating biosynthesis of alkaloid.

Comparative transcriptome analysis
In order to uncover potential key regulatory factors 
involved in alkaloid biosynthesis, this study conducted 
an analysis on a transcriptome dataset (CRA000551), 
including leaves and root with 3 replicates. Using stu-
dent’s t-test (p < 0.05) and fold change [|log2(foldchange)| 
> 1], we identified 1633 up-regulated and 4387 down-
regulated genes by comparing the transcriptomes of 
roots and leaves (Table S2). Using the GSEA analysis 
tool provided by the platform, we performed GO enrich-
ment analyses for the up-regulated and down-regulated 
genes. For the up-regulated genes, there was a signifi-
cant enrichment of genes related to protein folding and 

Fig. 2  The structure of DhuFAP framework consisted of seven primary sections. The Home section served as an introduction to this platform. The Net-
work section encompassed the co-expression network and PPI network. The Gene Family section comprised various gene families such as CYP450 family 
genes, transcription factors, transcription regulators, protein kinases, ubiquitin proteasomes, CAZy genes, Transport Proteins, and EAR motif-containing 
proteins. The Tools section offered functionalities like Search, BLAST, JBrowse, Sequence extraction, and GSEA toolkit. Pathway, Download, and Help were 
presented as separate sections
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photosystem (Fig.  5A). For the down-regulated genes, 
there was a significant enrichment of genes related to 
protein phosphorylation, transmembrane transport, and 
regulation of transcription (Fig. 5B). We also performed 
KEGG enrichment analysis and found that pathways 
related to biosynthesis of cofactors and carbon metabo-
lism, and biosynthesis of secondary metabolites were 
significantly enriched for the up-regulated genes in root 
(Fig.  5C). On the other hand, pathways related to bio-
synthesis of secondary metabolites were significantly 
enriched for the down-regulated genes in root (Fig. 5D). 
Therefore, these enrichment analysis results suggest that 
these differentially expressed genes may play a role in the 
synthesis of secondary metabolites, including alkaloids. 
Additionally, we focused on analyzing the transcription 
factors among these genes. Among the up-regulated gene 
set, there were a higher number of transcription fac-
tors such as AP2/ERF-ERF, C2H2, and bHLH (Fig.  5E). 
In contrast, the down-regulated gene set had a higher 
occurrence of transcription factors such as NAC, WRKY, 
MYB, and C2H2 (Fig.  5F). Since alkaloid synthesis is 
significantly higher in leaves compared to roots [7], the 
identified transcription factors may play a role in regulat-
ing the process of alkaloid biosynthesis.

Discussion
We have developed a comprehensive gene function 
analysis platform, DhuFAP, specifically designed for D. 
huoshanense. Our platform aims to provide researchers 
with a wide range of resources and tools to gain deeper 
insights into the functional genes and related biological 
processes of this species. Compared to other platforms, 
our platform is more professional and comprehensive, 
and can meet the diverse needs of researchers. DhuFAP 
focuses on D. huoshanense with specific genome anno-
tation and functional analysis. This allows researchers 
to gain a deeper understanding of the gene function of 
this traditional medicinal and food plant. Compared to 
generic platforms, we better meet the research needs of 
specific plants.

To further elucidate gene functions within the co-
expression network, our platform offers various analysis 
tools. These tools include gene set enrichment analysis, 
regulatory network analysis, gene expression pattern 
analysis, and more. Users can leverage these tools accord-
ing to their research needs to uncover the biological sig-
nificance within the co-expression network. To facilitate 
effective platform utilization, we provide detailed usage 
examples that demonstrate how to analyze functional 

Fig. 3  Gene details of CHS. (A) Functional annotations. (B) Location and transcript sequences. (C) Links for network. (D) Protein structure. (E) KEGG path-
way and (F) Expression pattern of CHS gene
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genes in DhuFAP. These examples showcase key steps 
such as filtering out important genes from the co-expres-
sion network, performing gene enrichment analysis, and 
interpreting regulatory networks. They not only highlight 
the capabilities of the platform but also offer practical 
guidance for users to conduct their own analyses.

DhuFAP serves as a powerful tool for researchers to 
delve into the functional genes and related biological pro-
cesses of D. huoshanense. By integrating co-expression 
networks and offering various analysis tools, along with 
detailed usage examples, we are committed to advanc-
ing D. huoshanense research and providing valuable 
resources for scientists in related fields.

While DhuFAP offers valuable features and tools, we 
acknowledge potential limitations and areas for improve-
ment. We predicted the protein interaction network of 
D. huoshanensis. The more protein interaction pairs that 
have been experimentally confirmed, the more accurate 
our PPI predictions will be. Compared the predicted 
interaction protein with those have been reported, the 
more overlapping the predicted interaction protein is, 
the more reliable predicted protein interaction network 
is. We investigated the literature of D. huoshanense and 
found that no protein interaction research of D. huosha-
nense had been reported. If relevant research reported in 
the future studies, we will further evaluate the predicted 
protein interaction network.

Fig. 4  Expression and co-expression network analysis of CHS. (A) Presentation of CHS gene expression using JBrowse. (B) Positive co-expression gene 
network of CHS. (C) Analysis of gene differential expression in the positive co-expression network when comparing root and stem transcriptomes. (D) 
Analysis of gene differential expression in the positive co-expression network when comparing root and leaves transcriptomes. (E) Comparative analysis 
of CHS co-expressed genes’ expression in different transcriptome samples using heatmap analysis tool
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Currently, the platform relies on existing gene expres-
sion datasets, and ensuring data quality and coverage 
remains a challenge. In the future, we plan to expand the 
scale and diversity of the dataset to provide more com-
prehensive and accurate analysis results. Additionally, we 
aim to refine and expand the analysis tools and function-
alities of the platform. This involves continuous improve-
ment, introducing new analysis methods and algorithms, 
and staying updated on the latest research advancements 
in the field of D. huoshanense.
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