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Abstract 

Background  The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) utilizes the Transposase 
Tn5 to probe open chromatic, which simultaneously reveals multiple transcription factor binding sites (TFBSs) 
compared to traditional technologies. Deep learning (DL) technology, including convolutional neural networks 
(CNNs), has successfully found motifs from ATAC-seq data. Due to the limitation of the width of convolutional kernels, 
the existing models only find motifs with fixed lengths. A Graph neural network (GNN) can work on non-Euclidean 
data, which has the potential to find ATAC-seq motifs with different lengths. However, the existing GNN models 
ignored the relationships among ATAC-seq sequences, and their parameter settings should be improved.

Results  In this study, we proposed a novel GNN model named GNNMF to find ATAC-seq motifs via GNN and back-
ground coexisting probability. Our experiment has been conducted on 200 human datasets and 80 mouse datasets, 
demonstrated that GNNMF has improved the area of eight metrics radar scores of 4.92% and 6.81% respectively, 
and found more motifs than did the existing models.

Conclusions  In this study, we developed a novel model named GNNMF for finding multiple ATAC-seq motifs. 
GNNMF built a multi-view heterogeneous graph by using ATAC-seq sequences, and utilized background coexisting 
probability and the iterloss to find different lengths of ATAC-seq motifs and optimize the parameter sets. Compared 
to existing models, GNNMF achieved the best performance on TFBS prediction and ATAC-seq motif finding, which 
demonstrates that our improvement is available for ATAC-seq motif finding.
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Background
Transcription factors (TFs) are proteins that can bind to 
DNA sequences and play a crucial role in gene-regulated 
networks [1], cell cycle regulation [2], and human dis-
eases [3]. The region where TFs bind to DNA sequences 
is called transcription factor binding sites (TFBSs), which 
are short and conserved DNA fragments [4]. Transcrip-
tion regulation is carried out by the interplay between 
TFs and TFBSs in DNA sequences, and identifying 
TFBSs aids us to reveal functions of TFs and the cause 
of human diseases [5]. The aligned TFBSs of the same 
TF can be defined as a regulatory DNA motif, which 
can be represented by a position weight matrix (PWM) 
[6]. Assays for Transposase-Accessible Chromatin using 
sequencing (ATAC-seq) can probe open chromatin via 
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Tn5, which is an effective method for locating TFBSs 
at a genome-wide level [7, 8]. Compared to Chromatin 
immunoprecipitation sequencing (ChIP-seq) and DNase 
I hypersensitive sites sequencing (DNase-seq) technolo-
gies, ATAC-seq can reveal more kinds of transcription 
factor binding regions [9]. An ATAC-seq footprint is a 
fragment of a DNA sequence that has not been cleaved 
due to the transcription factors binding. TOBIAS and 
Hint-ATAC are feasible tools for identifying ATAC-seq 
footprints, TOBIAS utilizes bias correction [10] and 
footprinting scores to locate footprints, and Hint-ATAC 
employs the hidden Markov model to locate footprints 
[11]. ATAC-seq footprints have been applied to TF net-
work prediction [11], comparison of TF activity [12], 
identification of TFs enriched in peripheral blood mono-
nuclear cells (PBMC)-specific peaks [13], and ATAC-seq 
motifs finding [14].

There are several special tools for ATAC-seq motif scan-
ning, such as TRACE, chromVAR, SnapATAC [15–17]. 
They scan input sequences by using known motifs, which 
limits their ability to find ATAC-seq motifs. DL technol-
ogy, including convolutional neural networks (CNNs) and 
the recurrent neural networks has achieved successes in 
protein-protein networks, gene-regulated networks, and 
motifs finding [18–20]. ATAC-seq motif finding includes 
two key steps: the first step is to predict an ATAC-seq 
sequence that contains TFBSs, i.e. TFBS prediction, and 
the second step is to find ATAC-seq motifs. Existing mod-
els such as scFAN, FactorNet, and DeepATAC employ 
CNNs to predict TFBSs and find motifs from ATAC-seq 
data [21, 22]. These models utilized convolutional ker-
nels of CNNs to scan ATAC-seq sequences, and a fully 
connected layer to predict TFBSs. Due to the limitation 
of the width  of convolutional kernels, these models only 
find motifs with fixed lengths. Moreover, these exist-
ing models do not consider the coexisting probability of 
TFBSs in an input sequence. In a related line of research, 
the graph neural network (GNN) can learn the key mes-
sage from the graph-structured data [23]. GNNs can learn 
the embeddings of nodes via their neighboring nodes, and 
keep the connection of the graph unchanged and nodes’ 
embedding can also enable graph-based explanation and 
reasoning. GNNs work on non-Euclidean structured data 
and have been shown to perform well on molecular struc-
tures [24], protein-protein networks [25], gene-gene net-
works [26], ATAC-seq motif finding [14], etc. MMGraph 
is an ATAC-seq motif predictor based on GNN and coex-
isting probability to find multiple motifs [14]. MMGraph 
utilizes ATAC-seq footprints to build a multi-view het-
erogeneous graph by defining coexisting, Hamming, jac-
card, and inclusive edges. Compared with CNN-based 
models, MMGraph utilizes ATAC-seq footprints to build 
the multi-view heterogeneous graph and employs the 

coexisting probability to find multiple ATAC-seq motifs 
of different lengths. However, MMGraph still has cer-
tain defects. MMGraph sets the coexistence probability 
threshold to 0.5, which needs to be optimized. MMGraph 
uses only Hamming distance and coexisting probability to 
measure the relationships between k-mers, which ignored 
the correlation between k-mers.

To address the above issues, this study developed a 
novel model called GNNMF to find ATAC-seq motifs 
and predict TFBSs. GNNMF is based on MMGraph 
and has three improved aspects: built a multi-view het-
erogonous graph, which contains four kinds of edges 
(coexisting edges, similarity edges, jaccard edges, and 
inclusive edges) and two types of nodes (k-mer nodes and 
sequence nodes); defined the iterloss function to improve 
TFBS prediction accuracy; optimized the threshold of 
coexisting probability via defining coexisting probability 
between k-mer nodes in negative sequences. We tested 
the effectiveness of the GNNMF model on 200 human 
ATAC-seq datasets and 80 mouse ATAC-seq datasets 
across nine evaluation metrics, including the area of 
eight metrics radar (AEMR), precision, recall, F1_score, 
accuracy (ACC), specificity, the Matthews correlation 
coefficient (MCC), the area under the receiver operating 
characteristic curve (AUC), and the area under the pre-
cision-recall curve (PRC). According to the experimental 
results, GNNMF improved the ACC, MCC, and AUC by 
9.6%, 18.2%, and 2.9%, respectively, on 200 human ATAC-
seq datasets and by 2.36%, 6.35%, and 3.01%, respectively, 
on 80 mouse ATAC-seq datasets. In this study, AEMR is 
an overall score for evaluating the model’s ability to pre-
dict TFBSs. GNNMF improved the AEMR by 4.92% and 
6.81% on 200 human and 80 mouse ATAC-seq datasets, 
respectively. Moreover, among all the models, GNNMF 
find the most 385 and 662 significant motifs from human 
ATAC-seq data and mouse ATAC-seq data , respectively.

Methods
Data processing
The 280 ATAC-seq datasets, including 200 human 
ATAC-seq datasets and 80 mouse ATAC-seq datasets, 
were randomly downloaded from the ENCODE pro-
ject (Supplementary Table S1). To obtain corrected 
footprints, footprints of each dataset are obtained via 
TOBIAS and Hint-ATAC tools with default parameters 
[11, 12]. All footprints are ranked in descending order 
by their scores. Then the top 1500 footprints are used 
to intersect with the footprints that Hint-ATAC obtains, 
and the intersected footprints of each dataset are applied 
to the following analysis.

Each intersected footprint is pruned with 101 bps 
around its center by the bedtools [27], which is set as 
a positive sequence. The TFBS prediction is a binary 
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classification, so we shuffle all bases within a positive 
sequence as a negative sequence [28]. This paper gives 
a positive sequence a label of ‘1’, and gives a negative 
sequence a label of ‘0’. Thus, we can obtain an ATAC-seq 
sequence set S that includes n sequences.

For each dataset, 80% of S is set as training data, 10% 
of S is set as validation data, and the remaining S is set as 
testing data. Then, the sequence s(·) ( s(·) ∈ S ) is trimmed 
into k-mers k(·) by the step of one base to obtain a k-mer 
set Ks(·)(lenk = length(k(·)) ). s(·) and k-mer k(·) will be 
utilized to build the multi-view heterogeneous graph G , 
where s(·) and k(·) are nodes.

Building the multi‑view heterogeneous graph
The multi-view heterogeneous graph G contains two 
kinds of nodes (sequence node s(·) and k-mer node 
k(·) ), and four types of edges (coexisting edge, similarity 
edge, Jaccard edge and inclusive edge) (Fig.  1A). Coex-
isting edges (view 1) represent coexisting relationships 

between k-mer nodes in a sequence, and the weights of 
coexisting edges are calculated by the coexisting prob-
ability [14]. Similarity edges (view 2) represent relations 
between k-mer nodes and the weights of similarity edges 
are measured by Hamming distances [29]. Jaccard edges 
(view 3) represent relationships between k-mer nodes, 
and the weights of Jaccard edges are measured by the 
Jaccard correlation coefficient. Inclusive edges represent 
inclusive relations between a given sequence s(·) and its 
constituent k-mers, and weights of inclusive edges are 
measured by TF-IDF (term frequency-inverse document 
frequency) [30].

We let Ks(i) be a k-mer set that contains all unique k(·) 
within s(i) . K  is an m k-mer set that contains all unique k(·) 
in all Ks(i) of S , where m is the total number of unique k(·) 
within S . Four edge types are defined to build G , where s(·) 
and k(·) are nodes.

Coexisting edges measure the coexisting probability 
between k(·) nodes. The coexisting edge weight between 
two k-mers k(p) and k(j) is calculated by Formula (1):

(1)
wco(p, j) = wco(j, p) = − log(

Q(k(p), k(j))

P(k(p))P(k(j))
) if nums(k(p), k(j)) > 0

P(k(p)) = num(k(p))

n
, Q(k(p), k(j)) = nums(k(p), k(j))

n

Fig. 1  The GNNMF framework
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where Wco represents a m×m coexisting weight matrix, 
num(k(·)) represents the total number of Ks(·) that con-
tain k(·) , and nums(k(p), k(j)) is the total number of Ks(·) 
that contain both k(p) and k(j).

Similarity edges measure mismatches between k(·) nodes 
using the Hamming distance [31]. The similarity edge 
weight between k(p) and k(j) is calculated by Formula (2):

where Wsim represents a m×m similarity weight 
matrix,p , j ∈ [1, ...,m] . Hammin g(·, ·) represents the 
Hamming distance function.

Jaccard edges measure the correlation between k(·) 
nodes using the Jaccard correlation coefficient. The Jaccard 
edge weight between two nodes k(p) and k(j) is calculated 
by Formula (3):

where Sk(·) presents a sequence set that contains all 
sequences, including k(·) . Wjac represents a m×m simi-
larity weight matrix, p , j ∈ [1, ...,m].

Inclusive edges measure the dependency degree between 
s(·) and k(·) . The inclusive edge weight between s(·) and 
k(·) is calculated by transferring the concept of the term 
frequency-inverse document frequency (TF-IDF) [32] to 
Formula (4):

where Winclu represents an m× n inclusive weight 
matrix,tf (k(p), s(i)) is the number of k(p) existing in s(i) , 
i ∈ [1, ..., n] , and p ∈ [1, ...,m].

GNNMF overview
In this study, we developed a three-layer GNN model named 
GNNMF to find ATAC-seq motifs. GNNMF decomposes 
the multi-view heterogeneous graph G into four sub-
graphs, i.e. a coexisting subgraph, similarity subgraph, Jac-
card subgraph, and inclusive subgraph (Fig.  1B). The first 
layer of GNNMF is utilized to learn the embedding of k(·) 
as Ek(k(·)) ∈ R

dc+ds+dj where dc , ds and dj are the embed-
ding dimensions of Esim(k(·))(Esim(k(·)) ∈ R

dc ), Eco(k(·))
(Eco(k(·)) ∈ R

ds ) and Ejac(k(·)) ( Ejac(k(·)) ∈ R
dj ) from 

the coexisting subgraph, similarity subgraph and Jaccard 
subgraph, respectively. The second layer learns the embed-
ding of s(·) as Es(s(·)) ( Es(s(·)) ∈ R

dsq ) from the inclusive 
subgraph, where dsq is the dimension of Es(s(·)) . The third 
layer is a fully connected layer, which is used to predict 
TFBSs.

We normalize Wco , Wsim and Wjac as the initial embed-
ding of k(·) via Formula (5).

(2)wsim(p, j) = wsim(j, p) = Hamming(k(p), k(j))

(3)wjac(p, j) = |Sk(k(p)) ∩ Sk(k(j))|
|Sk(k(p)) ∪ Sk(k(j))|

(4)

winclu(p, i) = tf (k(p), s(i))× log(
n

num(k(p))
) if k(p) ∈ Ks(i)

where Ect(k(p)) ( Ect(k(p)) ∈ R
dc ) is the initial embed-

ding of k(p) , based on Wco;Est(k(p))(Est(k(p)) ∈ R
ds ) is 

the initial embedding of k(p) , based on Wsim;Ejt(k(p))
(Ejt(k(p)) ∈ R

dj ) is the initial embedding of k(p) , based 
on Wjac.

GNNMF learns the embedding of k(p) as Eco(k(p)) 
from the coexisting subgraph, and Eco(k(p)) is calcu-
lated by Formula (7).

where Wco(Wco ∈ R
m×dc ) is a training weight matrix, 

which is randomly initialized. ReLU(·) represents the rec-
tified linear unit, which is an activation function.

GNNMF learns Esim(k(p)) from the similarity sub-
graph via Formula (9).

where Esim(k(p)) is the embedding of k(p) in the simi-
larity subgraph. Wsim(Wsim ∈ R

m×ds ) is a training weight 
matrix, which is randomly initialized.

GNNMF learns the embedding of k(p) as Ejac(k(p)) 
from the Jaccard subgraph, and Ejac(k(p)) is calculated 
by Formula (11).

where Wjac(Wjac ∈ R
m×dj ) is a training weight matrix 

that is randomly initialized.
Then, Esim(k(·)) , Eco(k(·)) and Ejac(k(·)) are concat-

enated as Esc(k(·)) (Formula (12)), which is fed into the 
second layer.

We stack Esc(k(p)) into a matrix Msc ( Msc ∈ R
m×(ds+dc+dj) ). 

GNNMF learns the embedding of s(·) as Esq(s(·)) via the 
second layer, Esq(s(·)) is calculated by Formula (14).

(5)

Ect(k(p)) = (

m

j=1

Wco(p, j))−1 ×Wco(p, :)

Est(k(p)) = (

m

j=1

Wsim(p, j))−1 ×Wsim(p, :)

Ejt(k(p)) = (

m

j=1

Wjac(p, j))−1 ×Wjac(p, :)

(6)eco(k(p)) = Ect(k(p))×Wco×Wco

(7)Eco(k(p)) = ReLU(eco(k(p)))

(8)esim(k(p)) = Est(k(p))×Wsim×Wsim

(9)Esim(k(p)) = ReLU(esim(k(p)))

(10)ejac(k(p)) = Ejt(k(p))×Wjac ×Wjac

(11)Ejac(k(p)) = ReLU(ejac(k(p)))

(12)
Esc(k(p)) = concatenate([Eco(k(p)),Esim(k(p)),Ejac(k(p))])
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The third layer is a fully connected layer, which is used 
to predict TFBSs (Formula (16)).

where W (W ∈ R
n×dsq ) is the training weight matrix, 

which is randomly initialized. b represents the bias, 
which is a n× 1 vector, sigmoid(·) is a sigmoid func-
tion, and ŷ(s(i)) represents the predicted label of s(i) by 
GNNMF.

The BCEloss is the binary cross-entropy loss, which is 
used to calculate the binary cross-entropy loss between the 
predicted probability and the true label. Based on BCEloss, 
we define the iterloss as the loss function of GNNMF [33]:

where y(s(i)) represents the true label of sequence s(i) 
(Formula (19)); ŷ(s(i)) represents the predicted label 
of sequence s(i) ; and epoch represents the iteration, 
BCEloss(s(i))0 = 0.

Find multiple motifs via coexisting probability 
between k‑mers
GNNMF calculates the mutual information (MI) mi(p, i) 
between k(p) and s(i) by using Esc(k(·)) and Esq(s(·)) 
(Fig.  1C). This study divided S into S0 and S1 by 
label = 1/0 , as well as nlabel , mlabel , slabel(·) , Kslabel(·) and 
Klabel . GNNMF calculates the MIlabel matrix by mi(p, i) , 
where k(p) ∈ Klabel , s(i) ∈ slabel(·) , i ∈ [1, ..., nlabel] . We 
define mean(MI0) as the background noise of MI1 and 
calculate the denoised MI matrix dnMI1 , where 

mean(MI0) = (
m0
∑

p=1

n0
∑

i=1

mi0(p, i))/(m0 × n0) and dnmi1(p, i) =

mi1(p, i)−mean(MI0) . We define the k-mer seed set 
Kseed(i) that contains all unique k(p) in s1(i) , when 
dnmi1(p, i) > 0,i ∈ [1, ..., n1] . Then, we locate the interval 
of k(p) in s1(i) as itk(p) = [strk(p), strk(p)+ lenk − 1] , 
where k(p) ∈ Kseed(i),strk(p) is the starting position of 
k(p) in s1(i) . If multiple k(p) exist in s1(i) , there will be 

(13)esq(s(i)) = Winclu(:, i)T ×Msc ×Winclu

(14)Esq(s(i)) = ReLU(esq(s(i)))

(15)ŷ(s(i)) = W (i, :)× Esq(s(i))+ b(i)

(16)ŷ(s(i)) = sigmoid(y′(s(i)))

(17)
BCEloss(s(i)) = −[y(s(i))× log ŷ(s(i))+ (1− y(s(i)))× log(1− ŷ(s(i)))]

(18)
Dloss(s(i))epoch−1 = BCEloss(s(i))epoch−1 × sigmoid(BCEloss(s(i))epoch−1)

(19)
iterloss(i) = Dloss(s(i))epoch−1 + BCEloss(s(i))epoch

multiple itk(p) . We obtain two k(·) centered on itk(p) as 
kl(p) = [ck(p)− lenk + 1, ck(p)] and kr(p) = [ck(p)+1, ck(p)+ lenk] , 
where ck(p) = strk(p)+

⌈

(lenk − 1)/2
⌉ and kl(p), kr(p) ∈ K .

We calculate the coexisting probability wco(kl(p), kr(j)) and 
background probability bwco(kl(p), kr(p)) between kl(p) and 
kr(p) , respectively. If wco(kl(p), kr(p)) < bwco(kl(p), kr(p)) , 
which means that kl(p) and kr(p) are strongly related, 
GNNMF merges kl(p) and kr(p) to a TFBS as tfbs(p) =
[ck(p)− lenk+1, ck(p)+ lenk] . For all k(·) ∈ Kseed(i) , 
we can find multiple candidates tfbs(i) in s1(i) . If multiple 
tfbs(i) overlap, they are merged into a longer TFBS in s1(i) . 
Finally, GNNMF can find multiple tfbs(·) with different 
lengths.

Evaluation metrics
Our evaluation metrics include precision, recall, F1_score, 
ACC, specificity, MCC, AUC, PRC, and AEMR [34]. 
AEMR is the area of a radar chart, which can be generated 
that consists of eight equiangular spokes with each spoke 

representing one of the scores defined above [14]. The 
higher the AEMR score is, the better the performance of 
model for TFBS prediction.

All the evaluation metrics are calculated via the following 
formulas:

(20)Precision = TP

TP + FN

(21)Recall = TP

TP + TN

(22)
2

f 1_score
= 1

precision
+ 1

recall

(23)Specificity = TN

FP + TN

(24)ACC = TN + TP

FP + FN + TP + TN

(25)
MCC = TP × TN − FP × FN√

(TP + FP)× (FP + FN )× (TN + FP)× (TN + FN )
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where TP, TN, FP and FN represent the number of the 
true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN), respectively.

The AUC is the area under the receiver operating char-
acteristic curve, and the PRC is the area under the preci-
sion-recall curve, which is a value between 0 and 1.

Experiment settings
This study trained GNNMF for 30 epochs using the 
Adam optimizer [35] (Fig.  2). The hyperparameters of 
GNNMF included the learning rate, dsim , dco , djac , 
dsq and lenk , and their ranges were tested in this study 
(Supplementary Table S2). We utilized the grid search to 
choose the optimal parameters and applied the combina-
tions of those hyperparameters to GNNMF model. The 
AUC is used to measure the performance of GNNMF 
with different combinations on the testing set. The learn-
ing rate of GNNMF was set as 0.001 and was adjusted 
by the natural exponential decay with 0.001. When we 
trained GNNMF on the training set, the sequence nodes 
in validation set and the testing set were masked. The 
dsim , dco and djac were set as 50, and dsq was set as 150 

(26)Oi,i+1 =
1

2
Ri × Ri+1 × sin(

π

4
) i = 1, ..., 8

(27)R = [precision, recall, F1_score,ACC , specificity,MCC ,AUC ,PRC , precision]
AEMR = sum(Oi,i+1) i = 1, ..., 8

in our experiment. Considering the computational com-
plexity and the performance of GNNMF, we set lenk = 5 . 
The scFAN, DeepATAC, FactorNet, MMGraph, and 
MMGraph+jac models are used as comparison tools, 
where MMGraph+jac combines MMGraph and jaccard 
graph. The evaluation metrics, including precision, recall, 
F1_score, ACC, specificity, MCC, AUC, PRC, and AEMR, 
are utilized to evaluate models’ performance on TFBS 
prediction. To explain the GNNMF model, ATAC-seq 

motifs are used to show features that GNNMF learned. 
We matched the found motifs to motifs that the HOCO-
MOCO database contains via the TOMTOM tool.

Results
TFBS prediction
In this study, we utilized nine metrics to evaluate the 
performance of all the models on 200 human ATAC-
seq datasets and 80 mouse ATAC-seq datasets (Fig.  3). 
FactorNeT, scFAN, DeepATAC, MMGraph, and 
MMGraph+jac were selected as comparison tools, 
because they achieved feasible performances in the previ-
ous study. In the light of results, AEMRs of models based 
on the GNN model are higher than those of the models 
based on the CNN model, which demonstrates that the 

Fig. 2  The workflow of the experimental setting
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GNN model is more suitable for ATAC-seq TFBS pre-
diction. On 200 human ATAC-seq datasets, GNNMF 
achieved the highest average AEMR score (2.13). Com-
pared to existing models, GNNMF improved the AEMR 
by 4.92%. Among models based on CNNs, DeepATAC 
obtained an AEMR of 1.59 , which is higher than those 
of scFAN and FactorNeT. On 80 mouse ATAC-seq data-
sets, GNNMF achieved consistent results on 200 human 
ATAC-seq datasets, and improved the AEMR by 6.81% 
(Supplementary Figure S1). On 280 ATAC-seq datasets, 
GNNMF yielded the highest AEMR score, which indi-
cated that our improvement was efficient.

On 200 human ATAC-seq datasets, GNNMF obtained 
the highest scores for all eight metrics and achieved 
average precision, recall, F1_score, ACC, specificity 
(Supplementary Figure S2), MCC, AUC, and PRC val-
ues of 0.863, 0.846, 0.843, 0.845, 0.944, 0.709, 0.942, and 
0.949, respectively. In particular, GNNMF improved 
the ACC and MCC by 2.13% and 5.08%, respectively. 
Moreover, on 80 mouse ATAC-seq datasets, GNNMF 
achieved average precision, recall, F1_score, ACC, speci-
ficity, MCC, AUC, and PRC values of 0.844, 0.831, 0.828, 
0.830, 0.917, 0.676, 0.931, and 0.946, respectively (Sup-
plementary Table S3). Compared to existing models, 
GNNMF improved the ACC and MCC by 2.36% and 
6.35%, respectively.

Finding multiple ATAC‑seq motifs
ATAC-seq can reveal all opening chromatin, which means 
that there are multiple motifs in an ATAC-seq dataset. 
In this study, we developed the GNNMF model to find 
ATAC-seq motifs by employing the GNN and coexisting 
probability. Existing DL models to find ATAC-seq motifs, 
including FactorNet, scFAN, DeepATAC, and MMGraph, 
were selecteds as comparison tools. We tested the above 
models on 280 ATAC-seq datasets including 200 human 
ATAC-seq datasets and 80 mouse ATAC-seq datasets. 
This study matches the found motifs to the HOCOMOCO 
database via the TOMTOM v5.1.0 tool. The p-value less 
than 0.05 indicated that the found motifs are significant. 
All motifs that each model found are listed in Table 1, 401 
human ATAC-seq motifs were found. Among all the mod-
els, GNNMF found the most ATAC-seq motifs. Moreover, 
we tested all the models on 80 mouse ATAC-seq datasets, 
and the number of motifs in which each model found is 
listed in Supplementary Table S4. The p-value depicts 
the degree to which the found motifs are significant. The 
p-values of the found motifs of each model are shown in 
the violin plot, and the median value shows the model’s 
ability to find ATAC-seq motifs (Fig. 4). GNNMF achieved 
the highest median value among all the models. Based 
on motif finding results, GNNMF found the most motifs 
among all the models. The GNN-based models outper-
formed the CNN-based models, which indicated that the 

Fig. 3  AEMRs of six models on 200 human ATAC-seq datasets
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GNN is a feasible algorithm for finding ATAC-seq motifs. 
GNNMF is based on MMGraph, which is improved via 
the Jaccard edge, background probability, and the iterloss 
function. Our results demonstrated that our improve-
ments were conducive to finding ATAC-seq motifs.

Discussion
This study developed a GNN model called GNNMF 
by improving the MMGraph model. We improved the 
MMGraph by using the Jaccard edge, iterloss function, 
and background probability. GNNMF decomposed the 
multi-view heterogeneous graph into four subgraphs, and 
employed a three-layer GNN model to predict TFBSs. The 
first layer of GNNMF was used to learn the embedding of 
k-mer nodes via the similarity subgraph, Jaccard subgraph, 
and coexisting subgraph. The second layer was used for the 
embedding of sequence nodes via the inclusive subgraph, 
and the third layer was used to predict TFBSs. GNNMF 
utilizes embeddings of k-mer nodes and sequence nodes 
to define k-mer seeds and employs the coexisting prob-
ability to find multiple motifs with different lengths. Exist-
ing models to find ATAC-seq motifs, including FactorNet, 
scFAN, DeepATAC, MMGraph and MMGraph +jac, were 
selected as comparison tools. We tested all the models 
on 200 human ATAC-seq datasets and 80 mouse ATAC-
seq datasets. We utilized the precision, recall, F1_score, 
specificity, ACC, MCC, AUC, and PRC to evaluate the 

models’ ability in TFBS prediction. In light of our results, 
GNNMF achieved the highest precision, recall, F1_score, 
ACC, specificity, MCC, AUC, and PRC of 0.863, 0.846, 
0.843, 0.845, 0.944, 0.709, 0.942, and 0.949, respectively, 
on 200 human datasets. On 88 mouse datasets, our pro-
posed model obtained the highest precision, recall, F1_
score, ACC, specificity, MCC, AUC, and PRC values of 
0.844, 0.831, 0.828, 0.830, 0.917, 0.676, 0.931, and 0.946, 
respectively. Moreover, the GNN-based model achieved 
higher AEMR scores than models based on CNN. Our 
results demonstrated that the GNN has more potential 
for TFBS prediction on ATAC-seq datasets. Compared to 
MMGraph+jac, GNNMF utilizes the iterloss to predict 
TFBSs. The AEMR of GNNMF was higher than that of 
MMGraph+jac, which indicated the iterloss has an advan-
tage over BCEloss in TFBS prediction.

GNNMF utilized the embedding of k-mer nodes and 
sequence nodes, and calculated coexisting probability 
between k-mer nodes to find multiple motifs with dif-
ferent lengths. MMGraph and MMGraph+jac used the 
same way to set the background probability threshold, 
and they set the background probability threshold to 0.5. 
However, GNNMF defines the background probability 
threshold via negative sequences. Our results indicated 
that GNNMF found more and higher quality motifs than 
MMGraph and MMGraph+jac. Therefore, the back-
ground probability threshold of the negative sequences 

Table 1  Count of motifs that each model found on 200 human ATAC-seq datasets

Models FactorNet scFAN DeepATAC​ MMGraph MMGraph+jac GNNMF

Motifs.no 270 291 281 375 375 385

Fig. 4  p-values of the found motifs of six models on 200 human ATAC-seq datasets
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aided GNNMF in finding ATAC-seq motifs. FactorNet, 
scFAN, and DeepATAC are all based on CNNs, they 
found ATAC-seq motifs by convolutional kernels in the 
first layer. But these models only found the fixed length 
of motifs, and the found motifs are similar. However, 
compared with models based on CNNs, models based on 
GNNs have great advantages. We utilized all the models 
to find ATAC-seq motifs and used p-value to evaluate the 
motifs’ quality. The results demonstrated that GNNMF is 
the best model for finding multiple ATAC-seq motifs.

GNNMF employs a three-layer GNN to predict 
whether given sequences are bound by TFs. Some novel 
algorithms can be applied in TFBS prediction, such as 
graph attention networks [36], graphGAN [37], and 
graph autoencoders [38]. In the heterogeneous graph, 
there are many relationships between nodes and each 
kind of relationship represents the importance between 
two nodes. The attention mechanism can allocate and 
update the different weights to the nodes and edges of 
the heterogeneous graph, during the training process 
of the model. Moreover, TFs bind indirectly to motifs 
of other TFs, which co-regulate targeted gene expres-
sion [39]. The cooperation of TFs acts as a vital role in 
the process of human disease [40]. ATAC-seq data can 
detect open-accessible DNA regions by probing open 
chromatin, meaning that ATAC-seq data contain multi-
ple TFs [41]. By analyzing ATAC-seq data, we revealed 
interactions between TFs, and explored the inducement 
of human disease. Therefore, GNNMF is a potential tool 
for studying the cooperation among different TFs.

Conclusions
In this study, we developed a novel model named GNNMF 
for finding multiple ATAC-seq motifs. GNNMF built 
the multi-view heterogeneous graph by using ATAC-seq 
sequences, employed a three-layer of GNN to predict 
TFBSs, and utilized coexisting probability to find ATAC-
seq motifs. We conducted experiments on 200 human and 
80 mouse ATAC-seq datasets to analyze the effectiveness 
of the proposed method. Our evaluation metrics included 
precision, recall, F1_score, ACC, specificity, MCC, AUC, 
PRC, and AEMR. In particular, GNNMF improved the 
AEMR by 4.92% and 6.81% on 200 human and 80 mouse 
ATAC-seq datasets, respectively. Meanwhile, GNNMF 
found multiple motifs from ATAC-seq data through the 
coexisting probability between k-mers. Regarding ATAC-
seq data, our proposed method found more and higher 
quality motifs, which demonstrated methods based on 
coexisting probability of k-mers are more efficient than DL 
models. As a result, GNNMF achieved better performance 
than a few state-of-the-art methods. This study made great 
contributions to finding motifs from ATAC-seq data.
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